Course Code	Course Title	ECTS Credits
ECE-541	RF Circuit Design	8
Department	Semester	Prerequisites
Engineering	Fall or Spring	ECE-540
Type of Course	Field	Language of Instruction
Elective	Engineering	English
Level of Course	Year of Study	Lecturer(s)
2 st Cycle	2 nd	Dr Anastasis Polycarpou
Mode of Delivery	Work Placement	Co-requisites
Face-to-face	N/A	None

Objectives of the Course:

The main objectives of the course are to:

- Provide graduate students with the necessary tools and knowledge for the design and testing of Radio Frequency (RF) circuits (passive or active)
- Employ techniques (graphical or analytical) for optimum design of RF circuits
- Provide deep understanding into the operation of microwave circuits and RF components such as isolators, resonators, circulators, amplifiers, oscillators, mixers, etc
- Identify important issues involved in the design of RF circuits
- Evaluate design performance based on certain figures of merit
- Introduce commercial software and tools for a more accurate design and testing of RF circuits and components

Learning Outcomes:

After completion of the course graduate students are expected to:

- Design passive or active RF circuits that perform according to specifications and design requirements
- Evaluate their design based on certain figures of merit using either analytical methods or commercially available software
- Design microwave resonators using transmission lines, dielectric loadings, waveguide cavities, etc
- Design microwave filters (LP, BP, etc) according to specifications
- Design ferrite-based microwave components (isolators, circulators, etc)
- Employ active RF components for the design of amplifiers, oscillators, and mixers

Course Contents:

- Review of important issues related to microwave circuit design (e.g., impedance matching, components, network analysis, etc)
- Design of microwave resonators using analytical tools and available commercial software packages
- Microwave filter design using analytical tools and available commercial software packages
- Ferrimagnetic components (e.g., isolators, phase shifters, circulators)
- Noise in RF Circuits

- Active RF components (e.g., PIN diodes, Varactor diodes, FETs, BJTs, etc)
- Design of RF amplifiers
- Design of RF oscillators and mixers

Learning Activities and Teaching Methods:

Lectures, in-class examples, exercises, design project

Assessment Methods:

Homework, mid-term and final exams, design project report.

Required Textbooks/Reading:

Authors	Title	Publisher	Year	ISBN
David M. Pozar	Microwave Engineering	John Wiley	2005	0471448788
		& Sons		

Recommended Textbooks/Reading:

Authors	Title	Publisher	Year	ISBN
Reinhold Ludwig	RF Circuit Design:	Prentice Hall	2008	0131471376
et. al	Theory & Applications			
Christopher	RF Circuit Design	Newnes	2007	0750685182
Bowick, et. al	_			
Behzad Razavi	RF Microelectronics	Prentice Hall	1997	0138875715