Course Code	Course Title	ECTS Credits		
ECE-533	Detection and Estimation	8		
	Theory			
Department	Semester	Prerequisites		
Engineering	Fall or Spring	ECE-332, MATH-280		
Type of Course	Field	Language of Instruction		
Elective	Engineering	English		
Level of Course	Year of Study	Lecturer(s)		
2 st Cycle	1 st	Dr Ioannis Kyriakides		
Mode of Delivery	Work Placement	Co-requisites		
Face-to-face	N/A	None		

Objectives of the Course:

The main objectives of the course are to:

- explain the general detection problem
- identify the Neyman-Pearson theorem
- identify the concept of minimum variance unbiased estimators
- explain the concept of minimum probability of error
- identify detection performance for deterministic and random signals
- identify the Cramer-Rao lower bound
- explain maximum likelihood estimation
- explain the Bayesian philosophy
- explain Kalman and particle filtering

Learning Outcomes:

After completion of the course students are expected to be able to:

- formulate detection problems
- use the Nayman-Pearson criterion to calculate optimum detector configurations
- apply detection rules to deterministic and random signals with both known and unknown parameters
- derive the Cramer-Rao lower bound
- use maximum likelihood estimation
- use Kalman filtering
- use particle filtering

Course Contents:

- The detection problem
- Statistical decision theory
- Deterministic signals known and unknown parameters
- Random signals known and unknown parameters
- Unknown noise parameters
- Non-Gaussian noise
- Minimum variance unbiased estimation

- Cramer-Rao lower bound
- Maximum likelihood estimation
- The Bayesian philosophy
- General Bayesian estimators
- Kalman filtering
- Particle filtering

Learning Activities and Teaching Methods:

Lectures, in-class assignments.

Assessment Methods:

Homework, in-class assignments, projects, exams, final exam.

Required Textbooks/Reading:

Authors	Title	Publisher	Year	ISBN
Steven M. Kay	Fundamentals of	Prentice-	1998	978-
	Statistical Signal	Hall		0135041352
	Processing, Volume 2:			
	Detection Theory			
Steven M. Kay	Fundamentals of	Prentice-	1993	9780133457117
	Statistical Signal	Hall		
	Processing, Volume 1:			
	Estimation Theory			

Recommended Textbooks/Reading:

Authors	Title	Publisher	Year	ISBN
Harry L. Van Trees	Detection, Estimation,	Wiley-	2001	978-
	and Modulation	Interscience		0471095170
	Theory, Part I			