Course Code	Course Title	ECTS Credits
ECE-523	Testing and Diagnosis for	8
	VLSI Systems and Circuits	
Department	Semester	Prerequisites
Engineering	Fall or Spring	ECE-420
Type of Course	Field	Language of Instruction
Elective	Engineering	English
Level of Course	Year of Study	Lecturer(s)
2 nd Cycle	1 st	Dr Stelios Neophytou
Mode of Delivery	Work Placement	Co-requisites
Face-to-face	N/A	None

Objectives of the Course:

The main objectives of this course are to:

- Provide the necessary background for Digital Testing and Testable design
- Explain the various test generation approaches and describe the main algorithms proposed for ATPG.
- Provide strong theoretical background on delay testing and emerging testing issues
- Discuss the major methodologies for fault diagnosis and early-stage fault identification.
- Describe different design-for-testability problems and possible solutions.

Learning Outcomes:

After completion of the course students are expected to be able to:

- Discuss the main fault models and test generation approaches used in the manufacturing process of VLSI design.
- Explain the basic processes of fault simulation, implication, justification, fault activation and propagation.
- Describe the general operation of an Automatic Test Pattern Generation process and discuss their major variations.
- Identify the major issues and discuss solutions for the problem of fault diagnosis in digital VLSI circuits.
- Discuss existing design-for-testability rules as well as identify the popular built-in-self test architectures and structures.
- Follow the trends in digital testing and fault diagnosis of future system-on-chip and multi-core systems.

Course Contents:

- Introduction to digital testing concepts and Fault models
- Combinational logic and fault simulation
- Test generation for combinational circuits
- Sequential and Functional test generation
- Delay fault testing
- Fault diagnosis

- Design for testability and Built-in self-test
- System-on-a-chip testing

Learning Activities and Teaching Methods:

Lectures, Project. Homework Assignments. Research literature review and presentation.

Assessment Methods:

Homework, Mid-Term, Project, Final Exam, Presentation.

Required Textbooks/Reading:

Authors	Title	Publisher	Year	ISBN
N. K. Jha,	Testing of Digital	Cambridge	2003	9780521773560
S. Gupta	Systems	University		
		Press		

Recommended Textbooks/Reading:

Authors	Title	Publisher	Year	ISBN	
Bushnell M. and	Essentials of Electronic	Springer	2000		
Agrawal, V.	Testing for Digital,				
	Memory, and Mixed-				
	Signal VLSI Circuits				
N. A. Sherwani	Algorithms for VLSI	Springer	1999		
	Physical Design				
	Automation, 3 rd Edition				
M. Abramovici,	Digital Systems Testing	Wiley-	1994		
M. A. Breuer,	& Testable Design	IEEE Press			
A. D. Friedman					