

Course Syllabus

Course Code	Course Title	ECTS Credits
ECE-460	Introduction to Robotics	6
Prerequisites	Department	Semester
PHYS-150, MATH-280	Engineering	Fall, Spring
Type of Course	Field	Language of Instruction
Elective	Engineering	English
Level of Course	Lecturer(s)	Year of Study
1 st Cycle	Dr Stelios Neophytou	4 th
Mode of Delivery	Work Placement	Corequisites
Face-to-face	N/A	None

Course Objectives:

The main objectives of the course are to:

- Provide an introduction to robotics and the various types of robotic systems.
- Explain robotic manipulators.
- Provide understanding of the kinematic and dynamic analysis, motion planning, and control of robotic systems.
- Explain the role of sensors and actuators in robotic systems.
- Discuss various applications and design issues.

Learning Outcomes:

After completion of the course students are expected to:

- 1. Identify and classify robotic systems, express the relevant terminology and cite their applications.
- 2. Understand the kinematics of robotic manipulators and be able to apply the mathematical methodologies used for kinematic analysis.
- 3. Understand the dynamics of robotic systems and how the relevant equations of motion are formulated.
- 4. Demonstrate the motion control methodologies as applied in robotics.
- 5. Differentiate sensors and actuators used in robotic systems and understand their principles of operation.
- 6. Design motion trajectories for robotic manipulation tasks.
- 7. State the specifications of a robotic system and evaluate it, based on the needs of a specific application.

Course Content:

- 1. Introduction to robotics: history, types of robotic systems and applications (industrial, medical, mobile, etc.).
- 2. Robotic manipulation systems: terminology, main parts, types of joints, end-effectors, and practical applications.
- Mathematical background: coordinate transformations, rotation matrices, and homogeneous transformations.
- 4. Manipulator kinematics: forward kinematics analysis, Denavit-Hartenberg procedure, workspace.
- 5. Inverse manipulator kinematics: analytical solution, existence of solutions, multiple solutions.
- 6. Velocity kinematics: Jacobian matrix, inverse velocity kinematics, singular configurations, redundancy.
- 7. Dynamics: modeling using the method of Newton-Euler and the method of Lagrange, equations of motion and important properties.
- 8. Control: feedback control schemes, trajectory planning methods.
- 9. Sensors and actuators used in robotics: position, velocity and force sensors, electric actuators, hydraulic and pneumatic actuators.

Learning Activities and Teaching Methods:

Lectures, in-class examples and exercises.

Assessment Methods:

Midterm examination, homework, final examination.

Required Textbooks / Readings:

Title	Author(s)	Publisher	Year	ISBN
Introduction to Robotics: Mechanics and Control	J. J. Craig	Pearson	2018	9780133489798

Recommended Textbooks / Readings:

Title	Author(s)	Publisher	Year	ISBN
Modeling and Control of Robot Manipulators	L. Sciavicco, B. Siciliano	Springer	2001	9781852332211
Robot Dynamics and Control	M. W. Spong, M. Vidyasagar	Wiley	1989	047161243X