

Course Syllabus

Course Code	Course Title	ECTS Credits	
ECE-442	Principles of Lasers	6	
Prerequisites	Department	Semester	
ECE-342, ECE-305	Engineering	Fall, Spring	
Type of Course	Field	Language of Instruction	
Elective	Engineering	English	
Level of Course	Lecturer(s)	Year of Study	
1 st Cycle	Dr Antonis Hadjiantonis	4 th	
Mode of Delivery	Work Placement	Corequisites	
Face-to-face	N/A	None	

Course Objectives:

The main objectives of the course are to:

- present the basic principles of laser operation making use of the background knowledge from electromagnetic theory and quantum physics
- present technological issues behind laser construction
- describe properties of different types of lasers and their application areas.

Learning Outcomes:

After completion of the course students are expected to be able to:

- Identify the mechanisms of absorption and emission of electromagnetic waves
- Present and analyze the necessary and sufficient conditions for laser operation
- Quantify the spectral broadening mechanisms in lasers
- Model cavity effects using a software like MATLAB or C
- Analyze the different modes of laser operation
- Analyze the propagation of laser beams in free space
- Identify the various types of lasers and analyze their characteristics

Course Content:

- 1. Introduction. What is Laser and what are the applications.
- 2. Review of discrete energy levels of matter.
- 3. Radiative and non-radiative transitions between energy levels.
- 4. Spontaneous emission and natural emission linewidth.
- 5. Stimulated emission; Gain and absorption profiles of matter. Population inversion and lasing conditions.
- 6. Laser cavity modes and stability in laser cavities (ABCD matrix).
- 7. Propagation characteristics of lasers beams
- 8. Q-switching, mode-locking and pulse shortening techniques
- 9. Applications of lasers in science and engineering

Learning Activities and Teaching Methods:

Lectures, and directed self-study

Assessment Methods:

Homework and/or Projects, Mid-Term, Final Exam

Required Textbooks / Readings:

Title	Author(s)	Publisher	Year	ISBN
Laser Fundamentals (2 nd edition)	W. T. Silfvast	Cambridge University Press	2012	978- 0511616426

Recommended Textbooks / Readings:

Title	Author(s)	Publisher	Year	ISBN
Lasers and Electro- optics: Fundamentals and Engineering (2e)	Christopher C. Davis	Cambridge University Press	2014	978- 0521860291