

# **Course Syllabus**

| Course Code           | Course Title               | ECTS Credits            |
|-----------------------|----------------------------|-------------------------|
| ECE-440               | Microwave Circuits         | 6                       |
| Prerequisites         | Department                 | Semester                |
| ECE-342               | Engineering                | Fall or Spring          |
| Type of Course        | Field                      | Language of Instruction |
| Elective              | Engineering                | English                 |
| Level of Course       | Lecturer(s)                | Year of Study           |
| 1 <sup>st</sup> Cycle | Prof. Anastasis Polycarpou | 4 <sup>th</sup>         |
| Mode of Delivery      | Work Placement             | Corequisites            |
| Face-to-Face          | N/A                        | None                    |

### **Course Objectives:**

The main objectives of the course are to:

- Introduce students to fundamental principles of microwave circuit analysis and design;
- Provide understanding of transmission lines including analytical and graphical tools for analysis and design;
- Introduce main concepts of network analysis and signal flow graphs;
- Introduce impedance matching techniques and tuning including multi-section matching transformers and tapered lines;
- Provide a complete understanding of waveguide propagation, modes, and attenuation;
- Provide the main principles and operation of power dividers, directional couplers, and hybrids;
- Introduce techniques for the design of microwave filters;
- Introduce software and tools for the analysis and design of microwave devices.

### **Learning Outcomes:**

After completion of the course students are expected to be able to:

- Formulate electromagnetic theory to model wave propagation in dielectric/lossy media;
- Use transmission-line theory for the analysis and design of microwave devices including analytical and graphical tools such as the Smith chart;
- Design microstrip lines, striplines, and microwave filters according to certain specifications;
- Explain wave propagation in waveguides and solve related problems for the calculation of wave attenuation, phase velocity, supporting modes, single-mode bandwidth, etc.;



- Design simple and complex matching/tuning networks for different types of loads;
- Design directional couplers, hybrids, and power dividers;
- Use network analysis techniques to design and analyze microwave circuits.

#### **Course Content:**

- Introduction to microwaves and relevant applications;
- An overview of electromagnetic theory including Maxwell's equations, fields in different media, boundary conditions, wave equation, polarization, energy and power, lossless and lossy material;
- Introduction to transmission-line theory ranging from transmission-line parameters and the Smith Chart to quarter-wave transformer, generator and load mismatch, loss mechanisms and transient analysis;
- Different types of transmission lines and waveguides including parallel-plate waveguides, rectangular and circular waveguides, coaxial cables, striplines, microstrips, propagating modes, wave velocity, dispersion, and attenuation;
- Microwave network analysis: Impedance and admittance matrices, scattering matrix, and transmission matrix (ABCD). Two-port networks, signal flow graphs (Mason's rules), and modal analysis;
- Impedance matching and tuning using lumped elements, single and double stub matching, quarter-wave transformer, binomial and Chebyshev multi-section matching transformers, and tapered lines;
- Power dividers, directional couplers and hybrids including the T-junction power divider, the Wilkinson power divider, the waveguide directional coupler, the coupled line directional coupler, and the 90- and 180-degree hybrid;
- Microwave filter design and analysis using analytical tools and software packages.

### **Learning Activities and Teaching Methods:**

Lectures, in-class examples and exercises

#### **Assessment Methods:**

Homework, project, exams, final exam

## Required Textbooks / Readings:

| Title                    | Author(s)      | Publisher            | Year | ISBN               |
|--------------------------|----------------|----------------------|------|--------------------|
| Microwave<br>Engineering | David M. Pozar | John Wiley<br>& Sons | 2011 | 978-<br>0470631553 |



# **Recommended Textbooks / Readings:**

| Title                                       | Author(s)    | Publisher           | Year | ISBN               |
|---------------------------------------------|--------------|---------------------|------|--------------------|
| Microwave Devices and Circuits              | S. Liao      | Prentice<br>Hall    | 1996 | 978-<br>0135832042 |
| Foundations for<br>Microwave<br>Engineering | R. E. Collin | Wiley-IEEE<br>Press | 2001 | 978-<br>0780360310 |