

Course Syllabus

Course Code	Course Title	ECTS Credits
ECE-324	Data Communication and Computer Networks	6
Prerequisites	Department	Semester
ECE-110, MATH-191	Engineering	Spring
Type of Course	Field	Language of Instruction
Required/Elective	Engineering	English
Level of Course	Lecturer(s)	Year of Study
1 st Cycle	Dr Antonis Hadjiantonis	3 rd
Mode of Delivery	Work Placement	Corequisites
Face-to-face	N/A	None

Course Objectives:

The main objectives of the course are to:

- introduce the basic characteristics of computer networks and how their effective design and standardization takes place
- establish an understanding of the ISO OSI layer model and compare it to the TCP/IP suite
- examine and distinguish the various forms of multiplexing (like time-, space-, wavelength- and frequency- and code-division multiplexing)
- establish the concept of a switched network and the various technologies it may adopt. Specifically compare and contrast the circuit-and packet-switching technologies
- explore routing schemes
- provide the basic design principles of wired and wireless communication networks.
- introduce the student to the computer simulation of network functionalities like routing and messaging
- briefly introduce the major high-speed network architectures, technologies and standards of today's telecom
- discuss current and future networking trends

Learning Outcomes:

After completion of the course students are expected to:

1. identify the basic computer network characteristics

- 2. associate with the need for network layered approach and correspond various protocols to the OSI model
- 3. underline the concept of switched networks and evaluate the technologies of packet- and circuit-switching
- 4. compare and contrast the various forms of division multiplexing
- 5. determine how digital and analog and digital telephone hierarchies came to be
- 6. appraise the basic spread spectrum techniques (DSSS and FHSS)
- 7. distinguish the protocols used in various types of computer networks (TCP, UDP, ALOHA, Token Ring etc.)
- 8. determine what ad-hoc and sensor networks are, and identify the various constraints specific to these networks
- 9. assess network performance using a computer simulation.

Course Content:

- 1. Introduction to Networks (OSI layers, topologies, standardization bodies)
- 2. Introduction to transmission systems. Multiplexing /demultiplexing concepts (TDM, FDM etc.). The E1/DS1 frames
- 3. Spread Spectrum techniques
- 4. Digital telephone exchange and the PSTN. Broadband access technologies. Copper based access (xDSL), Fiber in the access network (PON, FTTx)
- 5. Data-Link Layer Encoding, Framing and Synchronization, Error Detection and Correction, Flow control and the sliding window algorithm
- 6. Principles of Medium Access Control. Ethernet (802.3), Token Ring (802.5), FDDI, Wireless (802.11)
- 7. Packet- and Circuit- switching technologies
- 8. The Network Layer and its usage in the Internet, routing and addressing principles
- 9. Transport layer Services and Protocols. UDP and TCP; TCP congestion control
- 10. Current networking trends: Sensor and Ad-Hoc Networks
- 11. Brief introduction to high-speed networks (ATM, SDH/SONET

Learning Activities and Teaching Methods:

Lectures, Theoretical In-class Exercises and brief computer tutorials

Assessment Methods:

Homework, Computer Simulation Projects and Labs, Mid-Term, Final Exam

Required Textbooks / Readings:

Title	Author(s)	Publisher	Year	ISBN
Communications and Networking	Behrouz Forouzan	McGraw Hill	2007	007-125442-0

Recommended Textbooks / Readings:

Title	Author(s)	Publisher	Year	ISBN
Data and Computer Communication	William Stallings	Pearson Education	2009	0-13-507139-9