

Course Syllabus

Course Code	Course Title	ECTS Credits		
ECE-310	Digital Integrated Circuits	6		
Prerequisites	Department	Semester		
ECE-110, ECE-212	Engineering	Fall		
Type of Course	Field	Language of Instruction		
Required	Engineering	English		
Level of Course	Lecturer(s)	Year of Study		
1 st Cycle	Dr Stelios Neophytou	3^{rd}		
Mode of Delivery	Work Placement	Corequisites		
Face-to-face	N/A	None		

Course Objectives:

The main objectives of the course are to:

- Offer extensive knowledge and a broad foundation on the operation and design of digital integrated circuits
- Explain the DC and transient behaviour of a broad family of digital integrated circuits
- Provide the knowledge and tools needed for the analysis and design of digital integrated circuits
- Provide understanding of the major differences among the various families and designs of digital integrated circuits
- Introduce students to relevant software for modelling and analysis of digital integrated circuits
- Demonstrate the operation and design of basic digital blocks

Learning Outcomes:

After completion of the course students are expected to be able to:

- Explain the fabrication process and details of the internal operation of the various known families in digital integrated circuits
- Analyze a digital integrated circuit in terms of its Voltage Transfer Characteristic (VTC), Power Dissipation, maximum Fan-out, noise margins, transient characteristics, and power delay product
- Use commercial software for the analysis and design of digital integrated circuits
- Discuss the pros and the cons of the various families of digital integrated circuits including RTL, DTL, TTL, STTL, ECL, MOS, NMOS, CMOS
- Design basic logic gates using different types of technologies such as those based on BJT, Schottky-clamped BJT, MOS, NMOS, and CMOS transistors
- Evaluate the performance of digital integrated circuits and classify them according to their performance characteristics

Course Content:

- Properties, definitions and performance characteristics of digital integrated circuits
- Introduction to diodes and bipolar junction transistors
- Bipolar digital integrated circuits, Resistor-Transistor Logic (RTL), other logic gates, RTL fanout, power dissipations, fan-out, etc
- Basic Diode-Transistor Logic (DTL) inverter, modified DTL, DTL NAND, fan-out, power dissipation, etc
- Basic Transistor-Transistor Logic (TTL) inverter, TTL NAND, multiple emitter BJT, standard TTL NAND gate, voltage transfer characteristic (VTC), power dissipation, fan-out, other TTL gates, transient analysis
- Schottky-clamped TTL (STTL), Low-Power STTL (LSTTL), Advance STTL (ASTTL), VTC, fanout, power dissipation, transient analysis
- Emitter-Coupled Logic (ECL), NOR/OR gate using ECL technology, MECL NOR/OR gate, VTC, power dissipation, fan-out, transient analysis
- Metal Oxide Semiconductor Field Effect Transistor (MOSFET), N-Channel MOS (NMOS), PMOS, modes of operation, threshold voltage, capacitances
- MOS digital circuits, NMOS inverter, resistor-loaded NMOS invertir, saturated enhancementonly loaded NMOS inverter, fan-out, power dissipation, etc
- CMOS technology, operation of CMOS inverter, fan-out, power dissipation, VTC, capacitances

Learning Activities and Teaching Methods:

Lectures, in-class assignments, homework assignments, project.

Assessment Methods:

Homework, computer assignments, projects, exams, final exam.

Required Textbooks / Readings:

Title	Author(s)	Publisher	Year	ISBN
Digital Integrated Circuits	Thomas A. DeMassa and Zack Ciccone	John Wiley and Sons	2008	0471108057

Recommended Textbooks / Readings:

Title	Author(s)	Publisher	Year	ISBN
Digital Integrated Circuits: Analysis and Design	John E. Ayers	CRC	2003	084931951X