Course Code	Course Title	ECTS Credits
ECE-290	Numerical Methods Using	6
	MATLAB	
Department	Semester	Prerequisites
Engineering	Fall	MATH-191, MATH-280
Type of Course	Field	Language of Instruction
Required	Engineering	English
Level of Course	Year of Study	Lecturer(s)
1 st Cycle	2^{nd}	Dr Ioannis Kyriakides
Mode of Delivery	Work Placement	Co-requisites
Face-to-face	N/A	None

Objectives of the Course:

The main objectives of the course are to:

- Introduce the most essential numerical methods and computational techniques
- Provide understanding of basic mathematical concepts and principles which, along with numerical methods, can be used for the solution of problems in science and engineering
- Provide understanding of computational issues and commonly-used terms such as round-off error, degree of accuracy, rate of convergence, machine precision, etc.
- Introduce MATLAB programming for the implementation of numerical algorithms for the solution of problems in science and engineering
- Develop computationally efficient and accurate algorithms for the solutions of problems

Learning Outcomes:

After completion of the course students are expected to:

- Write software codes in MATLAB
- Use MATLAB as a programming tool to solve numerical problems in science and engineering and to graphically display the obtained solution
- Solve linear systems of equations using direct and iterative methods
- Solve numerically for the roots of higher-order polynomials
- Use interpolation techniques for curve-fitting of data
- Evaluate numerical differentiation and integration using different methods
- Solve boundary value problems using finite difference and finite element methods

Course Contents:

• Introduction to MATLAB programming including arrays and matrix operations, files and built-in functions, logical statements, loops, operators, data structures,

plotting, etc.

- Solution of linear systems of equations using direct and iterative methods
- Root finding of higher-order polynomials
- Interpolation and curve fitting using polynomials, sinusoidal functions, Lagrange functions, and splines
- Numerical integration using rectangular and trapezoidal rules, Simpson's rule, and Gauss quadrature
- Numerical differentiation using backward, forward and central difference
- Solution of boundary value problems using finite difference and finite element methods

Learning Activities and Teaching Methods:

Lectures, in-class examples, exercises, computer assignments

Assessment Methods:

Homework, exams, Project, final exam.

Required Textbooks/Reading:

Authors	Title	Publisher	Year	ISBN
Amos Gilat and	Numerical Methods for	John Wiley	2008	9780471734406
Vish Subramaniam	Engineers and	& Sons		
	Scientists: An			
	Introduction with			
	Applications Using			
	MATLAB			

Recommended Textbooks/Reading:

Authors	Title	Publisher	Year	ISBN
Steven C. Chapra	Numerical Methods for	McGraw	2006	007-124429-8
and Raymond P.	Engineers	Hill		
Canale				
William J. Palm III	Introduction to	McGraw	2004	007-254818-5
	MATLAB 7 for	Hill		
	Engineers			