Course Code	Course Title	ECTS Credits
ECE-210	Electronics I	6
Department	Semester	Prerequisites
Engineering	Fall, Spring	ECE-100
Type of Course	Field	Language of Instruction
Required	Engineering	English
Level of Course	Year of Study	Lecturer(s)
1 st Cycle	1 st	Dr Anastasis Polycarpou
Mode of Delivery	Work Placement	Co-requisites
Face-to-face	N/A	None

Objectives of the Course:

The main objectives of the course are to:

- Provide students with a basic background on semiconductor materials and semiconductor physics.
- Introduce the characteristics and operation of electronic devices such as p-n junctions, bipolar-junction transistors and field-effect transistors.
- To analyze and design electronic circuits involving diodes, BJT, JFET and MOSFET.
- Apply electronic circuits for common devices such as rectifiers, power supplies, stabilizers, logic gates and others.
- Develop skills for troubleshooting and simulating electronic circuits.

Learning Outcomes:

After completion of the course students are expected to:

- Comprehend basic semiconductor theory.
- Explain the I-V characteristics of a diode, its regions of operation, obtain the bias point.
- Solve problems on large and small signal diode circuits by making sensible decisions on which models to use.
- Draw and analyze diode applications circuits such as rectifiers, regulators, power supplies, limiter circuits.
- Explain the basic operation, input/output characteristics and regions of operation
 of the BJT (npn and pnp) in the common-base, common-emitter and commoncollector configurations.
- Perform dc analysis (algebraically and graphically using current-voltage curves with superimposed load lines) and design of CB, CE and CC transistor circuits.
- Describe the operation and structure of field effect transistors (JFET/MOSFET) and perform dc circuit analysis.

• Apply circuit-analysis software to analyze the dc and small-signal operation of fundamental electronic circuits.

Course Contents:

- Basic semiconductor concepts: crystal structure, energy bands, electron and hole carrier current, p- and n-type semiconductors
- Semiconductor diode construction, diffusion and drift currents, barrier potential, forward and reverse biased p-n junctions, breakdown
- Ideal and real diodes, I-V curves, diode current equations, models, ac and dc resistance, temperature effects, power dissipation, zener diode, breakdown, ratings and specifications
- Analysis of dc diode circuits, dc load line, bias point, analysis of small-signal diode circuits, half and full wave rectifiers, capacitive filtering, switching and waveshaping circuits, zener regulator analysis and design
- Bipolar junction transistor types and structure, regions of operation, common base, common emitter, and common collector input/output characteristics, bias circuit analysis and design, dc load lines, algebraic and graphical quiescent point determination, BJT as a switch
- JFET and MOSFET (enhancement type) transistor construction and operation, characteristic curves, bias circuit analysis, JFET current source, JFET as an analog switch

Learning Activities and Teaching Methods:

Lectures, in-class examples and exercises.

Assessment Methods:

Homework, exams, final exam.

Required Textbooks/Reading:

Authors	Title	Publisher	Year	ISBN
Robert Boylestad	Electronic Devices and	Pearson	2009	0136064639
Louis Nashelsky	Circuit Theory	Education		

Recommended Textbooks/Reading:

iteeommenaea i enesoons/iteaams.					
Authors	Title	Publisher	Year	ISBN	
Theodore F. Bogart	Electronic Devices and	Prentice	2004	0131111426	
Jeffrey S. Beasley	Circuits	Hall			
Guillermo Rico					