

Course Code	Course Title	ECTS Credits
CVEE-470	Transportation Plan and	6
	Design	
Department	Semester	Prerequisites
Engineering	Fall, Spring	CVEE-211
Type of Course	Field	Language of Instruction
Elective	Civil & Environmental	English
	Engineering	
Level of Course	Year of Study	Lecturer(s)
1 st Cycle	4 th	Prof. John N. Sahalos
Mode of Delivery	Work Placement	Co-requisites
Face-to-face	N/A	None

Objectives of the Course:

The main objectives of the course are to:

- Introduce students to the basic transportation functions by mode and in a systems context, and transportation concepts and terminology.
- Provide students with a good background in transportation characteristics, operations, design, planning, and maintenance.
- Teach students the principles, concepts and methods unique to transportation, (demand modeling, capacity analysis, traffic engineering, geometric design, pavement design, and maintenance management systems)
- Provide students experiences with the collection and analysis of transportation data for use in design.
- Improve students' ability in preparing formal reports and describing complex design procedures.

Learning Outcomes:

After completion of the course students are expected to:

- Apply knowledge of mathematics, science, and engineering. Course work includes four derivations from dynamics and two from mathematics.
- Design a system, component, or process to meet desired needs
- Function on a multi-disciplinary team.
- Identify, formulate, and solve engineering problems.
- Understand professional and ethical responsibility.
- Communicate effectively.
- Understand the impact of engineering solutions in a global and societal context.
- Develop skills, tools, and knowledge needed for engineering practice.

Course Contents:

- Highway Geometric Design
- Highway Traffic Operations, Capacity, and Control Systems
- Airport Runway and Taxiway Design
- Transportation Pavements
- Harbor Design
- Public Transportation
- Transportation Planning
- Safe Pedestrian Practices
- Maintenance Systems
- Transportation, Energy, and Air Pollution
- Financing Transportation Improvements
- Administration of Transportation Functions

Learning Activities and Teaching Methods:

Lectures, Projects, Discussion

Assessment Methods:

Homework, Project assignments, exams, final exam.

Required Textbooks/Reading:

Authors	Title	Publisher	Year	ISBN
Garber Nicholas	Traffic and Highway	Brooks/Cole	2002	978-
and Hoel Lester	Engineering	Publishing,		049508250
		Pacific Grove,		7
		CA,		

Recommended Textbooks/Reading:

Authors	Title	Publisher	Year	ISBN