Course Code	Course Title	ECTS Credits
CVEE-430	Geotechnical Engineering	6
Department	Semester	Prerequisites
Engineering	Fall, Spring	CVEE-330
Type of Course	Field	Language of Instruction
Elective	Civil & Environmental	English
	Engineering	_
Level of Course	Year of Study	Lecturer(s)
1 st Cycle	4 th	Dr Ernestos N. Sarris
Mode of Delivery	Work Placement	Co-requisites
Face-to-face	N/A	None

Objectives of the Course:

The main objectives of the course are to:

- Introduce the students to the discipline of geotechnical engineering.
- Teach the students how to perform ground investigation in the site and application of investigation methods.
- Introduce the students to the theories of elasticity and plasticity for geomechanical applications.
- Help the students understand the basics of rock mechanics.
- Application of the finite element method for solving geotechnical problems (e.g soil improvements, reinforced earth and slope stabilization).
- Calculate stability of deep excavations and support measures.
- Design stabilization measures for unstable soil and rock masses (e.g. landslides).
- Provide a basic understanding of physical phenomena related with soil and rock mechanics (e.g expansive soils, landslides and liquefaction.

Learning Outcomes:

After completion of the course students are expected to:

- Acquire knowledge on geotechnical engineering (site and ground investigation methods).
- Understand the theories of elasticity and plasticity useful for constitutive modelling of soils and rocks.
- Acquire practical knowledge with the application of the finite element method for solving geotechnical problems.
- Perform computational analysis for stabilization measures and stability of deep excavations.
- Understand and explain physical phenomena that are related with geomechanics.

Course Contents:

- Introduction to Geotechnical Engineering.
- Ground investigation.
- Seepage.
- Theory of elasticity and plasticity (constitutive modelling).
- Introduction to rock mechanics.
- Finite element method for geomechanical applications.
- Retaining and stabilizations measures.

Learning Activities and Teaching Methods:

Lectures, in-class examples and exercises, projects, discussion

Assessment Methods:

Homework assignments, final big project, mid-term, final exam.

Required Textbooks/Reading:

Authors	Title	Publisher	Year	ISBN
Sam Helwany	Applied Soil Mechanics	John Wiley and	2007	978-
		Sons		0471791072
David M. Potts		ICE Publishing	2001	978-
and L.	in Geotechnical			0727739629
Zdravkovic	Engineering:			
Zaravkovie	Application (V2)			

Recommended Textbooks/Reading:

Authors	Title	Publisher	Year	ISBN
R.E. Goodman	Geotechnical	Ross	2010	978-1-60427-
	Engineering: A	Publishing		016-7
	Practical Problem	Eureka Series		
	Solving Approach			
Braja M. Das,	Principles of	Cengage	2013	978-
Khaled Sobban	Geotechnical	Learning		1133108665
	Engineering, 8th			
	Edition			
C. Venkatramaiah	Geotechnical	New Age	2006	81-22417930
	Engineering	International		
		Ltd		