

Course Syllabus

Course Code	Course Title	ECTS Credits
COMP-354	Operating Systems	6
Prerequisites	Department	Semester
COMP-221, COMP-335	Computer Science	Spring
Type of Course	Field	Language of Instruction
Required	Computer Science	English
Level of Course	Lecturer(s)	Year of Study
1 st Cycle	Prof. Harald Gjermundrød	3^{rd}
Mode of Delivery	Work Placement	Corequisites
Face-to-face	N/A	None

Course Objectives:

The main objectives of the course are to:

- describe and discuss Operating System structuring methods like monolithic, layered, modular, micro-kernel models.
- provide deep knowledge of abstractions, processes, and resources.
- make aware the concept of protection through the transition between user and system(kernel) mode.
- thoroughly discuss OS structures like ready list, process control blocks, and so forth.
- provide deep knowledge of the concept of processes and threads.
- thoroughly discuss dispatching, context switching, preemptive, and non-preemptive scheduling.
- cover in detail the "mutual exclusion" problem and some solutions.
- provide advanced knowledge of deadlock including: causes, conditions, and prevention.
- provide advanced knowledge of synchronization models and mechanisms (semaphores, monitors, condition variables, rendezvous).
- describe and discuss physical memory, memory management hardware, paging, and virtual memory.

Learning Outcomes:

After completion of the course students are expected to be able to:

- 1. critically compare and evaluate how computing resources are used by application software and managed by system software
- 2. compare and contrast the various ways of structuring an operating system such as object-oriented, modular, micro-kernel, and layered
- 3. describe and discuss the difference between kernel and user mode in an operating system
- 4. critically evaluate the difference between processes and threads
- 5. compare, contrast, and analyze the common algorithms used for both preemptive and non-preemptive scheduling of tasks in operating systems, such as FCFS, priority, shortest job first, round robin, and multi-layer schemes
- 6. analyze reasons for using interrupts, dispatching, and context switching to support concurrency in an operating system.
- 7. evaluate the need for concurrency within the framework of an operating system
- 8. demonstrate the potential run-time problems arising from the concurrent operation of many separate tasks
- 9. apply various approaches for solving the problem of mutual exclusion in an operating system
- 10. analyze memory hierarchy and cost-performance trade-offs
- 11. compare, contrast, and analyze the concept of virtual memory and how it is realized in hardware and software.

Course Content:

- 1. Introduction. History of operating systems, computer-system organization and architecture, operating system structure and operation.
- 2. Operating system structures. Operating system services and interfaces, system programs, operating system design and implementation. Desktop OS vs Mobile OS.
- 3. Processes. Process concepts, process scheduling, operations on processes, and cooperating processes.
- 4. Threads. Motivation, user and kernel threads, multithreading models, thread scheduling.
- 5. Processor (CPU) scheduling. Preemptive vs. non-preemptive, FCFS, SJF, Priority, RR, and multilevel queue.
- 6. Process Synchronization. Producer-consumer problem, mutual exclusion, Peterson solution, lock-based solution, and semaphores.
- 7. Deadlocks. System model, prevention, avoidance, detection, and recovery.
- 8. Memory Management. Logical and physical address space, swapping, and memory allocation.

- 9. Virtual Memory. Paging, segmentation, page replacement strategies.
- 10. File System. Interface and Implementation.

Learning Activities and Teaching Methods:

Lectures, Practical Exercises, Project Work, and Assignments.

Assessment Methods:

Final Exam, Midterm Exam, Project, and Quizzes.

Required Textbooks / Readings:

Title	Author(s)	Publisher	Year	ISBN
Operating Systems Concepts, 10 th Ed.	Silberschatz, Gavin, and Gagne	Wiley	2018	978- 1118063330

Recommended Textbooks / Readings:

Title	Author(s)	Publisher	Year	ISBN
Operating Systems: Three Easy Pieces	Remzi H. Arpaci- Dusseau and Andrea C. Arpaci-Dusseau	Arpaci-Dusseau Books	2023	Version 1.10 Online
Operating Systems: Internals and Design Principles, 9 th Ed.	W. Stallings	Prentice Hall	2017	978- 0134670959
Modern Operating Systems, 4 th Ed.	A. Tanenbaum, H. Bos	Prentice Hall	2014	978- 0133591620