Course Syllabus

Course Code	Course Title	ECTS Credits	
COMP-321	Theory of Computation	6	
Prerequisites	Department	Semester	
COMP-270	Computer Science	Fall	
Type of Course	Field	Language of Instruction	
Required	Computer Science	English	
Level of Course	Lecturer(s)	Year of Study	
1 st Cycle	Prof. Ioanna Dionysiou	3^{rd}	
Mode of Delivery	Work Placement	Corequisites	
Face-to-face	N/A	None	

Course Objectives:

The main objectives of the course are to:

- introduce the basic theoretical principles in Computer Science
- compare and contrast the various types of finite automata
- thoroughly discuss formal definitions of programming languages and their connection with finite automata
- cover in detail Turing machines and computability
- introduce the theoretical understanding of the halting problem.
- cover time complexity theory (class P, class NP, NP-completeness)

Learning Outcomes:

After completion of the course students are expected to be able to:

- 1. apply techniques to construct finite state machines and regular expressions
- 2. apply techniques to design context-free languages
- 3. design a (non)deterministic finite-state machine to accept a specified language
- 4. explain how some problems have no algorithmic solution
- 5. analyze examples that illustrate the concept of uncomputability
- 6. prove that a language is in a specified class and that it is not in the next lower class.
- 7. apply techniques to convert among equivalently powerful notations for a language, including among DFAs, NFAs, and regular expressions, and between PDAs and CFGs
- 8. analyze the Church-Turing thesis and its significance

- 9. discuss the Halting Problem
- 10. demonstrate the usage of reductions to decide if a problem is solvable or insolvable
- 11. analyze class P, class NP, NP-complete problems.

Course Content:

- 1. Automata and Languages
 - a. Regular Languages
 - i. Finite Automata (FA)
 - ii. Deterministic FA and Nondeterministic FA
 - iii. Regular Expressions and Languages
 - b. Context-free Grammars and Languages
 - i. Context-free Grammars
 - ii. Pushdown Automata (PDAs)
 - iii. Non-Context-Free Languages
- 2. Computability Theory
 - a. The Church-Turing Thesis
 - i. Turing Machines
 - ii. Variants of Turing Machines
 - b. Decidability
 - i. Decidable Languages
 - ii. Diagonalization
 - iii. The Halting Problem
 - c. Reducibility
 - i. Reductions
- 3. Complexity Theory
 - a. Time complexity (class P, class NP, NP-completeness)

Learning Activities and Teaching Methods:

Lectures, Practical Exercises, and In-class Problem Solving Sessions

Assessment Methods:

Final Exam, Midterm Exam, and Assignments

Required Textbooks / Readings:

Title	Author(s)	Publisher	Year	ISBN
Introduction to Automata Theory, Languages, and Computation (3 rd Ed.)	John Hopcroft, Rajeev Motwani, Jeffrey Ullman	Pearson	2006	978- 0321455369

Recommended Textbooks / Readings:

Title	Author(s)	Publisher	Year	ISBN
Introduction to the Theory of Computation	William A. Goddard	Jones & Bartlett Publishers	2008	978- 0763741259
Introduction to the Theory of Computation (3 rd Ed.)	Michael Sipser	Course Technology	2012	978- 1133187813