

## **Course Syllabus**

| Course Code           | Course Title       | ECTS Credits            |
|-----------------------|--------------------|-------------------------|
| COMP-303              | Data Mining        | 6                       |
| Prerequisites         | Department         | Semester                |
| None                  | Computer Science   | Fall                    |
| Type of Course        | Field              | Language of Instruction |
| Elective              | Computer Science   | English                 |
| Level of Course       | Lecturer           | Year of Study           |
| 1 <sup>st</sup> Cycle | Dr Ioannis Katakis | 3 <sup>rd</sup>         |
| Mode of Delivery      | Work Placement     | Corequisites            |
| Face to Face          | N/A                | None                    |

#### **Course Objectives:**

The main objectives of the course are to:

- The main objectives of the course are to:
- Provide understanding of what is Data Mining
- Determine when and how we can use Data Mining tools
- Introduce the concepts and techniques of pre-processing of the data to be analyzed,
- Introduce the concepts and techniques of statistical methods, Decision Trees, Clustering
- Methods and Association Rules from data

## **Learning Outcomes:**

After completion of the course students are expected to be able to:

- 1. analyze problems and find abstract solutions
- 2. use the basic data mining concepts and problem solving techniques
- 3. prepare data to be analyzed
- 4. apply statistical methods to analyze data
- 5. use Decision Trees to analyze data
- 6. use Clustering Methods to analyze data
- 7. extract Association Rules from data.



#### **Course Content:**

- 1. Introduction to Data Mining
  - a. What is Data Mining?
  - b. What tasks can Data Mining accomplish?
- 2. Data preprocessing
  - a. Data cleaning
  - b. Handling missing Data
  - c. Data transformation
- 3. Classification
  - a. Classification and Regression Trees
  - b. C4.5
  - c. Naïve Bayes
  - d. Neural Networks
  - e. kNN
- 4. Clustering methods
  - a. Hierarchical Clustering Methods
  - b. K-Mean clustering
- 5. Association rules
  - a. Support, Confidence, Frequent Itemsets
  - b. A priori algorithm

### **Learning Activities and Teaching Methods:**

Lectures, Demonstration of Data Mining Tools, Assignments, Projects.

#### **Assessment Methods:**

Mid-term exam, Project, Assignments/Quizzes, Final Exam.



# **Required Textbooks / Readings:**

| Authors         | Title                | Publisher | Year | ISBN       |
|-----------------|----------------------|-----------|------|------------|
| Tan, Steinbach, | Introduction to Data | Pearson   | 2005 | 0321321367 |
| Kumar           | Mining               |           |      |            |

# **Recommended Textbooks / Readings:**

| Authors             | Title                  | Publisher | Year | ISBN       |
|---------------------|------------------------|-----------|------|------------|
| Han, Kamber, Pei    | Data Mining: Concepts  | Morgan    | 2011 | 9380931913 |
|                     | and Techniques, Third  | Kaufmann  |      |            |
|                     | Edition                |           |      |            |
| Witten, Frank, Hall | Data Mining: Practical | Morgan    | 2011 | 0123748569 |
|                     | Machine Learning       | Kaufmann  |      |            |
|                     | Tools and Techniques   |           |      |            |