

Course Syllabus

Course Code	Course Title	ECTS Credits	
COMP-302	Database Management Systems	6	
Prerequisites	Department	Semester	
Junior Standing	Computer Science	Fall, Spring	
Type of Course	Field	Language of Instruction	
Required	Computer Science	English	
Level of Course	Lecturer(s)	Year of Study	
1 st Cycle	Dr Vasso Stylianou	3 rd	
Mode of Delivery	Work Placement	Corequisites	
Face-to-face	N/A	None	

Course Objectives:

The main objectives of the course are to:

- Explain the purpose and architecture of database-management systems (DBMS).
- 2. Build a solid foundation in the relational model, ER modelling, and relational algebra.
- 3. Develop competence in SQL for data definition, manipulation, control, and selected advanced features (CTEs, window functions, JSON).
- 4. Teach high-quality schema design: normalisation, integrity constraints, basic physical design.
- 5. Introduce transaction processing, isolation levels, and recovery.
- 6. Introduce students to cloud-hosted and distributed relational services.
- 7. Compare relational technology with key NoSQL families.
- 8. Demonstrate how relational stores support business-intelligence pipelines.
- 9. Highlight security, compliance, and ethical responsibilities in data management.

Learning Outcomes:

After completion of the course, students are expected to be able to:

- 1. Describe DBMS components and their roles.
- 2. Model application domains with ER diagrams and map them to relational schemas.
- 3. Write ANSI SQL gueries, including CTEs, window functions, and JSON operations.
- 4. Apply 1NF \rightarrow BCNF normalisation and justify denormalisation when appropriate.
- 5. Design basic physical structures (data types, indexes) and interpret execution plans.
- 6. Configure transactions, isolation levels, and recovery mechanisms.
- 7. Deploy a small cloud database with automated backups and read replication.

- 8. Explain encryption, Role-Based Access Control (RBAC), auditing, GDPR, and related ethical issues.
- 9. Summarise key-value, document, column-family, and graph stores and justify when a relational design is preferable.
- 10. Build a simple ETL process, populate a star schema, and issue OLAP queries.

Course Content:

- 1. DBMS overview; data ethics & societal impact.
- 2. Relational model; relational algebra; SQL setup.
- 3. ER modelling; mapping ER \rightarrow relations.
- 4. SQL DDL & core DML.
- 5. Joins, sub-queries, set ops, CTEs.
- 6. Window functions; JSON columns; intro to plans.
- 7. Normalisation (1NF-BCNF).
- 8. Physical design: data types, indexing, partitioning; plan analysis.
- 9. Transactions & concurrency; security & compliance.
- 10. Cloud & distributed relational DBs; scalable analytics demo.
- 11. BI pipeline (ETL, star schema, OLAP); NoSQL overview.

Learning Activities and Teaching Methods:

Interactive lectures; Supervised labs; CASE tools demonstrations; Team project integrating modelling, SQL, BI, and ethics.

Assessment Methods:

Midterm exam; Team project; Final exam.

Required Textbooks / Readings:

Title	Author(s)	Publisher	Year	ISBN
Database Processing; Fundamentals, Design, and Implementation, 16 th ed.	Kroenke, D. M., Auer, D. J., Vandenberg, S. L., Yoder R. C.	Pearson	2021	9780136930174

Recommended Textbooks / Readings:

Title	Author(s)	Publisher	Year	ISBN
Fundamentals of Database Systems, 7th ed.	Elmasri, R., & Navathe, S.	Addison- Wesley	2017	9780470440513
Database System Concepts, 7th ed	Silberschatz, A., Korth, H. F., & Sudarshan, S.	McGraw- Hill	2020	
Designing Data-Intensive Applications	Kleppmann, M.	O'Reilly	2017	
SQL Performance Explained, 3rd ed.	Winand, M.		2022	
Official documentation: PostgreSQL 16, MySQL 8				
Cloud provider tutorials: AWS RDS, Azure SQL, Google Cloud SQL & BigQuery				