Course Syllabus

Course Code	Course Title	ECTS Credits
COMP-211	Data Structures	6
Prerequisites	Department	Semester
COMP-113, MATH-101	Computer Science	Fall, Spring
Type of Course	Field	Language of Instruction
Required	Computer Science	English/Greek
Level of Course	Lecturer(s)	Year of Study
1 st Cycle	Andreas Savva	2 nd
Mode of Delivery	Work Placement	Corequisites
Face-to-face	N/A	None

Course Objectives:

The main objectives of the course are to:

- Introduce students to Abstract Data Types (ADT).
- Provide practical experience to advanced programming techniques and data structures including tables, linked lists, queues and stacks.
- Introduce students to advance recursion such as the divide-and-conquer and backtracking.
- Obtain a foundation that will allow students to use storage media; methods of representing structured data; and techniques for operating on data structures.
- Introduce students to searching and sorting algorithms.
- Introduce students to Binary Trees and graphs.

Learning Outcomes:

After completion of the course students are expected to be able to:

- be proficient in developing high quality source code.
- Discuss the use of primitive data types and build-in data structures.
- Describe common applications for different data structures.
- Implement user-defined data structures in a high-level language.
- Compare alternative implementations of data structures with respect to performance.
- Recognize when and how to use the following data structures: Arrays, Linked lists, Stacks, Queues and Binary trees.

- Compare and contrast the costs and benefits of dynamic and static data structure implementation.
- Choose the appropriate data structure for modeling a given problem.
- Describe the concept of recursion and give examples of its use.
- Describe the divide-and-conquer and backtracking approaches.
- Compare iterative and recursive solutions and determine when a recursive solution is appropriate for a problem.
- Apply various sorting and searching algorithms.

Course Content:

- 1. Programming Principles
 - Programming style
 - Coding, testing and further refinement
 - Program maintenance
 - Abstract Data Types (ADT)
- 2. Stacks Arrays
 - Stack specifications
 - Implementation of Stacks
 - Application of Stacks
 - The Standard Template Library (STL)
- 3. Queues Arrays
 - Specification of Queues
 - Implementation of Queues
 - Circular Queues
 - Application of Queues
- 4. Linked Stacks and Queues
 - Pointers
 - Linked Stacks
 - Safeguards
 - Linked queues
- 5. Recursion
 - Principles of recursion
 - Tree of subprogram calls
 - Divide-and-Conquer
 - Backtracking
 - Tree structure programs: Look-Ahead in Games
- 6. Linked Lists
 - List Definition
 - Implementation of Lists
 - Double Linked lists

- Circular Linked lists
- 7. Binary trees
 - Definition of Binary Trees
 - Traversal of Binary Trees (preorder, inorder, postorder)
 - Linked implementation of Binary Trees
 - Binary Search Trees Insertion, Removal, Treesort
 - Breadth-First Vs Depth-First Traversal
- 8. Sorting
 - Insertion sort
 - Bubble sort
 - Quick sort
- 9. Searching
 - Sequential search
 - Binary search
 - Comparison Trees
- 10. Introduction to Graphs

Learning Activities and Teaching Methods:

Lectures, in-class exercises

Assessment Methods:

Homework, Assignments, Mid-Term, Final Exam

Required Textbooks / Readings:

Title	Author(s)	Publisher	Year	ISBN
C++ Plus Data Structures, 6th ed.	Nell Dale, Chip Weems, Tim Richards	Jones and Barlett Learning	2018	1284089185

Recommended Textbooks / Readings:

Title	Author(s)	Publisher	Year	ISBN
Open Data Structures: An Introduction	Pat Morin	au Press, Athabasca University	2013	2291-2614