

Course Syllabus

Course Code	Course Title	ECTS Credits	
CHEM-245	Organic Chemistry	6	
Prerequisites	Department	Semester	
CHEM-135	Life & Health Sciences	Spring	
Type of Course	Field	Language of Instruction	
Required Course	Chemistry	English	
Level of Course	Lecturer(s)	Year of Study	
1 st Cycle	Dr. Marios Stylianou	2 nd	
Mode of Delivery	Work Placement	Corequisites	
Face-to-face	LAB practical session included	None	

Course Objectives:

The main objectives of the course are to:

- to give students an introduction to the basic principles of organic chemistry,
- to cultivate an appreciation of the role of organic chemistry in everyday life and in biological systems
- to help develop sound practical skills in the unique laboratory explorations of organic chemistry

Learning Outcomes:

After completion of the course students are expected to be able to:

- 1. Draw the chemical structure and name a wide variety of classes of organic compounds.
- 2. Discuss the physical and chemical properties of saturated, unsaturated and aromatic hydrocarbons.
- 3. Discuss the physical and chemical properties and main reactions of oxygen-containing organic compounds, including unsaturated carbonyl group compounds.
- 4. Discuss the structure and reactivity of nitrogen-containing organic compounds (such as amines, amino acids and protein structure molecules).
- 5. Employ the chemical reactions of all above-named compounds to propose multistep

- syntheses of a wide variety of organic compounds.
- 6. Interpret a variety of spectra, including IR, visible, UV and proton NMR spectra, in the determination of the chemical structures of organic compounds.
- Employ a wide variety of organic mechanisms to predict the products of organic chemical reactions, including the region-chemistry and stereochemistry of the reaction intermediates and final products.
- 8. Discuss the structures, functions, and key chemical reactions of the principal groups of biological compounds, including carbohydrates, lipids, amino acids, and proteins.

Course Content:

- 1. Functional Groups and Organic Nomenclature
- 2. Hydrocarbons
 - i. Alkanes (Chain Radical Reactions)
 - ii. Cycloalkanes
 - iii. Alkenes
 - iv. Alkynes
 - v. Aromatics
- 3. Oxygen Containing Molecules
 - i. alcohols
 - ii. aldehydes and ketones
 - iii. carboxylic acids
 - iv. carboxylic acid derivatives
- 4. Nitrogen Containing Compounds (Amines and Amino acids, Proteins)
- 5. Carbohydrates
- 6. Molecular Spectroscopy and Structure Determination
 - i. absorption spectroscopy (IR and UV)
 - ii. mass spectrometry
 - iii. proton NMR spectroscopy
- 7. Organic Stereochemistry
- 8. Organic Synthesis and Mechanisms

Laboratory Experiments:

- 1. Laboratory Safety Demonstrations
- 2. Solubility Polarity of Organic Compounds
- 3. Detection of Functional Groups in Organic Compounds
- 4. Detection of S, N and Cl in Organic Compounds
- 5. Infra-Red (IR) Spectroscopy
- 6. Separation of an Acetone-Water Mixture by Simple Distillation
- 7. Isolation of Limonene from Orange Peel Using Hydro-distillation
- 8. Saponification: Preparation of Bar Soap
- 9. Extraction Isolation of Caffeine from Tea
- 10. Synthesis of Dibenzalacetone
- 11. Recrystallization Determination of the Melting Point of Organic Compounds

Learning Activities and Teaching Methods:

Lectures, Laboratory Practical Sessions, Interactive Workshops and Assignments.

Assessment Methods:

- 1. Midterm Examination
- 2. QUIZZ-TEST
- 3. LAB Assessment
- 4. Final Examination

Required Textbooks / Readings:

Title	Author(s)	Publisher	Year	ISBN
Organic Chemistry	John E. McMurry	OpenStax	2023	ISBN 13: 9781951693985
Organic Experiments	K.L. Williamson	Houghton Mifflin Company	2004	ISBN: 0-618-30842-3

Recommended Textbooks / Readings:

Title	Author(s)	Publisher	Year	ISBN
Study Guide and Student Solutions Manual for John McMurry's Organic Chemistry	S. McMurry	Thompson Brooks/Cole	2004 6 th Edition	ISBN: 0-534-40934-2
Organic Chemistry	T.W.G. Solomons and C.B. Fryhle	Wiley	2004 8 th Edition	ISBN: 978-0- 471-41799-6